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Abstract

This paper deals with theH2-matrix approximation of matrices that arise from a Galerkin boundary element (BEM)

discretization in the context of the E-based eddy current model. The BEM operators are dense, thus need to be

compressed. They are of complicated structure, i.e., some kernels and basis functions are vector valued, and test and

basis functions are not always identical. The H2-matrix approximation technique is applied to the kernels of the four

different relevant boundary integral operators. Numerical experiments demonstrate the significant acceleration of an

iterative solution procedure by means of matrix compression.
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1. Introduction

We consider the simulation of the induction heating process. In this process, a slowly rotating con-

duction workpiece is exposed to an oscillating electro-magnetic field generated by applying an alternating

current to an inductor, usually a coil (cf. Fig. 1). The field penetrates the workpiece and creates eddy currents

due to Faraday�s law. Ohmic losses of these currents heat the workpiece.

At the relevant frequency range of 10–40 kHz and in the presence of high conductivities, we can simplify

Maxwell�s equations governing the electro-magnetic processes to get the eddy current model, which neglects

the displacement current [2,6].
In the frequency domain, i.e., for time-harmonic excitations with a constant angular frequency x 2 R>0,

it takes the form
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Fig. 1. Typical setting for induction heating: Inductor, workpiece and two plates.
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divE ¼ 0; in Xþ; ð1Þ
curl
1

l
curlE ¼ �ixðrEþ j0Þ in R3; ð2Þ
½n� E� ¼ n

�
� 1

l
curlE

�
¼ 0 in oX�; ð3Þ
EðxÞ ¼ Oðjxj�2Þ; curlEðxÞ ¼ Oðjxj�2Þ for jxj ! 1; ð4Þ

if a formulation based on the electric field E is used. Here l is the magnetic permeability, r is the con-

ductivity and n is the outer normal. The interior of the items, i.e., workpiece, inductor, and plates, is de-

noted by X�, the exterior vacuum is denoted by Xþ ¼ R3 n X�, and j0 is the exciting current density in the

inductor. The jump conditions (3), which are chosen at the interface of the items and the vacuum, are the

transmission conditions of normal and tangential component of the electric field.
The domain X� is approximated by a tetrahedral triangulation created from CAD data files. This tri-

angulation induces a surface mesh of the boundary consisting of flat open triangles.

Finding a viable numerical scheme for solving the eddy current model is not an easy task. One important

reason is that one has to cope with the unbounded exterior of a rotating workpiece with general, genuinely

three-dimensional geometry.

An approach is introduced in [12], where the author presents a FEM/BEM-coupled scheme based on

edge elements. The FEM part is used in X� and the BEM part, which is needed for the exterior vacuum Xþ,

consists of boundary integrals over oX�. So this scheme uses only elements on oX� and inside X� and can
easily be applied to a moving Lagrangian mesh. The BEM part results from applying the Neumann trace

and the Dirichlet trace to a Stratton–Chu kind of representation formula for the electric field in the exterior

vacuum Xþ. The FEM part for the interior domain X� is then coupled to this BEM part by using the jump

conditions (3) on the boundary.
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Here, we are only interested in the BEM operators, therefore we introduce so-called impedance

boundary conditions (cf. [17])

n� ðE� nÞ ¼ ð1� iÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1

2rlx

s
curlE� n;

that allow us to separate the FEM part from the BEM part. Eq. (5) represents the discretized boundary
integrals of the BEM part, see also [13]

MR �MI �B> 0

�MI �MR 0 B>

�B 0 �Q 0

0 B 0 Q

0
BB@

1
CCA

ER

EI

uR

uI

0
BB@

1
CCA ¼ right-hand side: ð5Þ

The material parameters and the frequency then appear in the operatorsMR andMI. If the workpiece is not

simply connected, i.e. if there are holes in it, one needs additional matrices that are small enough to remain

uncompressed, thus are of minor interest here.

The right-hand side of the equation arises from the exciting current in the inductor. The unknowns

ER and EI 2 RE are the real (R) and imaginary (I) parts of the electric field, discretized by surface edge

elements (cf. Section 2.2). The unknowns uR and uI 2 RN are the real and imaginary parts of a scaled

scalar magnetic potential grad/ ¼ ðl0=lÞcurlE, discretized by standard nodal basis functions on the

surface.
Here,N denotes the set of surface nodes, E denotes that of surface edges, and the set of surface triangles

is denoted by T.

All these functions and the BEM matrices MR 2 RE�E, MI 2 RE�E, Q 2 RN�N and B 2 RN�E will be

defined more precisely in the next section.

A direct solver cannot be used for Eq. (5) because it needs too much storage and is too slow. Instead, a

fast iterative solver is applied, where matrix–vector multiplications dominate the total complexity.

The triangulation of the boundary C must be fine enough to meet two different demands. First, the

geometry of the items must be described in a satisfactory way, and second, the desired precision of the
solution must be achieved. For our application, this means that a number #TP 10,000 of surface triangles

must be used for typical workpieces. The occurring BEM operators of Eq. (5) are dense. A matrix–vector

multiplication for n unknowns needs Oðn2Þ operations, and the amount of storage is of the same order.

Parts with #T ¼ 10; 000 surface triangles have approximately #E ¼ 15,000 edges and #N ¼ 5000 nodes.

For the storage requirements of the matrices in (5) this means:

• Storing MR requires 15; 0002 � sizeofðdoubleÞ ¼ 1:67 Gbytes,

• storing MI requires 15; 0002 � sizeofðdoubleÞ ¼ 1:67 Gbytes,

• storing B requires 15; 000� 5000� sizeofðdoubleÞ ¼ 0:56 Gbytes and
• storing Q requires 50002 � sizeofðdoubleÞ ¼ 0:18 Gbytes.

We see that more than 4 Gbytes are needed, an amount of memory beyond the capacity of current desktop

computers. Therefore, a compression technique must be applied to the four different boundary integral

operators. This can be done by using the H2-matrix approximation [4].

We remark that there is a close relationship ofH2-matrices to the panel clustering technique [11] and the

fast multipole method for integral operators [8,14]. While the multipole technique applies an expansion

specially designed for the kernel function under investigation in order to reach the, in some sense optimal,

complexity of Oðn log2 nÞ, the H2-matrix technique has a complexity of Oðn log3 nÞ but can be applied to
any asymptotically smooth (cf. (14)) kernel function.

The following section sketches several aspects of the implementation of our method and demonstrates its

properties by numerical experiments.
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2. Boundary element formulation

2.1. Bilinear forms

For our discrete method, we replace the boundary C by a polygonal approximation Ch given by the

triangulation T

Ch ¼
[

ft : t 2 Tg:

The question of how to choose a suitable triangulation, and therefore approximation Ch of C, is not a

subject of this paper.

The matrices MR, MI, Q and B occurring in (5) are Galerkin discretizations of boundary integral

operators corresponding to the bilinear forms

mRðU;EÞ :¼
Z
Ch

Z
Ch

CmhcDUðyÞ; cDEðxÞidydxþ
Z
Ch

Z
Ch

hcurlCUðyÞ; curlCEðxÞiUðx; yÞdydx; ð6Þ
mIðU;EÞ :¼
Z
Ch

Z
Ch

CmhcDUðyÞ; cDEðxÞidydx; ð7Þ
qðg;/Þ :¼
Z
Ch

Z
Ch

hcurlCgðyÞ; curlC/ðxÞiUðx; yÞdydx; ð8Þ
bðg;EÞ :¼ � 1

2

Z
Ch

hcurlCgðxÞ; cDEðxÞidxþ
Z
Ch

Z
Ch

hcurlCgðyÞ; cDEðxÞihgradxUðx; yÞ; nðxÞidydx;

�
Z
Ch

Z
Ch

hcurlCgðyÞ; nðxÞihgradxUðx; yÞ; cDEðxÞidydx; ð9Þ

where

Cm ¼ l0

ffiffiffiffiffiffiffi
rx
2l

r
;

n is the outer normal of the surface C, E is an electric field and U a corresponding test function, while / is
the scalar magnetic potential mentioned above and g is the corresponding test function.

U is the fundamental solution of the Laplace operator in three space dimensions given by

Uðx; yÞ :¼ 1

4p
1

jx� yj ; x; y 2 R3; x 6¼ y: ð10Þ

cD is the tangential trace operator on Ch, curlC and curlC are the vector-valued and scalar-valued surface

curls. These three operators are given by

cDE :¼ n� ð lim
�!þ0

Eðxþ �nÞ � nÞ;

curlC/ :¼ cDðgrad/Þ � n;

curlCE :¼ hn; curlEi:
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2.2. Discretization

We want to use a piecewise polynomial conforming Galerkin approach to discretize the problem, so we
need appropriate discrete spaces. This implies that the discretized potentials g and / have to be continuous

at the edges of the triangulation, while the discretized vector fields U and E have to have a continuous

tangential component.

Further details on the discretization and the properties of the boundary integral operators are given in

[12].

Let us consider a triangle T ¼ ABC 2 T. The surface measure of the triangle ABC is given by

S :¼ kðB� AÞ � ðC� AÞk=2. We suppose that the vertices A, B and C are ordered counter-clockwise, so

that the outer normal vector of T is given by

n :¼ ðB� AÞ � ðC� AÞ
2S

:

We introduce the vectors

f :¼ B� C and t :¼ n� f

kn� fk ;

(cf. Fig. 2).

The local edge element basis function corresponding to the edge e :¼ BC is given by

bT ;eðxÞ :¼
ðx� AÞ � n

2S
:

For x ¼ Cþ aðB� CÞ, we have

hbT ;eðxÞ; fi ¼
hðx� AÞ � n; fi

2S
¼ detðx� A; n;B� CÞ

2S
¼ detðC� A; n;B� CÞ

2S

¼ detðB� A;C� A; nÞ
2S

¼ hðB� AÞ � ðC� AÞ; ni
2S

¼ hn; ni ¼ 1;

i.e., the tangential component of bT ;e on the edge e is constant and equal to 1. Similar computations reveal

that the tangential component on bT ;e on the other edges AB and CA are constant and equal to zero. This

implies that we can build a global edge element basis function be for each edge e 2 E by combining the local

edge element basis functions bT ;e corresponding to the triangles touching e.
Fig. 2. Setting for the definition of basis functions.
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The local nodal basis function corresponding to the vertex v :¼ A is given by

/T ;vðxÞ :¼ �kfkhx� C; ti
2S

:

We have

/T ;vðAÞ ¼ �kfkhA� C; ti
2S

¼ �kfkhn� f;A� Ci
2Skn� fk ¼ � detðn;B� C;A� CÞ

2S

¼ detðn;B� A;C� AÞ
2S

¼ detðB� A;C� A; nÞ
2S

¼ hn; ni ¼ 1:

It is obvious that /T ;vðBÞ ¼ /T ;vðCÞ ¼ 0 holds. Since /T ;v is affine, we can build a global nodal basis function

/v for each vertex v 2 N by combining the local nodal basis functions /T ;v corresponding to the triangles

touching v.
Discretizing the bilinear forms (6)–(9) leads to the matrices MR 2 RE�E, MI 2 RE�E, Q 2 RN�N and

B 2 RN�E defined by

MR;ij :¼ mRðbi; bjÞ; MI;ij :¼ mIðbi; bjÞ;
Qij :¼ qðwi;wjÞ and Bij :¼ bðwi; bjÞ;

for i; j 2 E and i; j 2 N.

2.3. Properties of the discretized matrices

The amount of work involved in assembling the matrices can be significantly reduced by making use of

the fact that

mRðU;EÞ ¼ mIðU;EÞ þ gðcurlCU; curlCEÞ and ð11Þ
qðg;/Þ ¼
X3
l¼1

gððcurlCgÞl; ðcurlC/ÞlÞ; ð12Þ

hold for

gðf; hÞ :¼
Z
Ch

Z
Ch

fðyÞhðxÞUðx; yÞdydx: ð13Þ

An important property of the basis functions /v for v 2 N and be for e 2 E is that ðcurlC/vÞjt and ðcurlCbeÞjt
are constant for each triangle t 2 T. This implies that we can represent the non-sparse part of mRð�; �Þ and
qð�; �Þ by discretizing gð�; �Þ by piecewise constant functions ðvtÞt2T. This does not hold for the discretization

of bð�; �Þ, where we have to use the piecewise linear basis functions be.

All bilinear forms are double integrals with differential operators (namely curlC and curlC), the trace

operator cD and the fundamental solution Uð�; �Þ and its derivatives as integrands. The differential operators

and the trace operator do not increase the support of the basis function and can therefore be considered

‘‘harmless’’, which leaves us with the problem of discretizing the integral operators involving the non-local

function Uð�; �Þ, namely those that correspond to the bilinear forms gð�; �Þ and bð�; �Þ.
3. Matrix approximation

The integral kernels in (6)–(9) describe long range interactions between the boundary regions at x and y.

Their strength depends on the inverse of the distance jx� yj. A common strategy for compression of the
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matrices is to approximate the kernels in the so-called far-field, i.e., in regions that are far away from each

other, whereas one sticks to exact kernels in the near-field.

Panel clustering methods are widely used [11,15,16]. They are based on degenerate approximations of the
kernel function in the far-field. We construct the approximation by using an interpolation instead of the

more traditional Taylor expansion. This leads to fast algorithms, see [7], that can be stated in the context of

H2-matrix techniques [4,10].

We replace the singularity function U by its Chebyshev interpolation, so we need only pointwise eval-

uations of U instead of the derivatives required by Taylor-based approaches. Since the interpolation of U
on the entire domain Ch � Ch would not lead to good results due to the singularity at x ¼ y, we consider

sub-domains of the form s� r and apply the interpolation locally. If a constant order m of the interpo-

lation is used, then the resulting approximation is an H2-matrix (cf. [4]). Using this structure, we can
perform the matrix–vector multiplication and the discretization of the far-field in Oðnm3Þ operations, where
n is the number of the degrees of freedom. For some kernel functions, the complexity can be improved to

OðnÞ by using a non-constant order [5,15,16]. In our case, a constant order of m ¼ 2 or 3 is sufficient.

The H2-matrix approximation method consists of two main parts: the preparation phase of the

compressed matrix representation, which needs to be performed only once even for several matrix–vector

multiplications, and the matrix–vector multiplication itself. The preparation phase consists of three parts: we

have to find a suitable splitting of Ch � Ch into sub-domains, we have to compute the matrices corre-

sponding to the H2-representation of the far-field blocks and we have to compute the coefficients of the
near-field blocks.
3.1. Motivation

3.1.1. Approximation

Due to (11) and (12), we can use sparse matrices in order to reduce the problem of treating mR and q to

that of treating the auxiliary bilinear form g introduced in (13). This can be done by the methods introduced

in [4] in the context of hierarchical matrices [3,9].
The kernel function U is asymptotically smooth, i.e., there are constants Cas; c0; d 2 R>0 such that

oaxo
b
yUðx; yÞ

��� ���6Casc
jajþjbj
0 ðaþ bÞ!kx� yk�d�jaj�jbj

; ð14Þ

holds for all x; y 2 R3 with x 6¼ y and all multi-indices a; b 2 N3
0. In the case of the Laplace kernel, we have

c0 ¼ 1 and d ¼ 1.

Let s; r � Rd be sub-domains of Ch such that distðs; rÞ > 0. We introduce the local bilinear form gs;r

given by

gs;rðf; hÞ :¼
Z
s

Z
r
fðyÞhðxÞUðx; yÞdydx:

Eq. (14) implies that the function U is smooth on s� r, so we can approximate it on this sub-domain by

polynomials and use the approximation of the kernel function to define an approximation of the bilinear

form gs;r.
In order to keep our algorithm simple, we will not work with s and r directly, but use axis-parallel boxes:

Let Bs and Br be minimal d-dimensional axis-parallel boxes satisfying s � Bs and r � Br.

We apply mth order tensor product interpolation operators Is
m and Ir

m given by

Is
m½u�ðxÞ ¼

X
m2M

u xs
m

� �
Ls

mðxÞ and Ir
m½v�ðyÞ ¼

X
l2M

v xr
l

� �
Lr

lðyÞ; ð15Þ
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where ðxs
mÞm2M and ðxr

lÞl2M are interpolation points in Bs and Br and ðLs
mÞm2M and ðLr

lÞl2M are the corre-

sponding Lagrange polynomials. M is a suitable index set, usually f0; . . . ;mg3 (cf. (25)).
We approximate U by

~UUs;rðx; yÞ :¼ Is
m

�
�Ir

m

�
½U�ðx; yÞ ¼

X
m2M

X
l2M

U xs
m; x

r
l

� �
Ls

mðxÞLr
lðyÞ: ð16Þ

3.1.2. Low-rank representation

Replacing Ch by s and r and U by ~UUs;r in (13), we get

~ggs;rðf; hÞ :¼
Z
s

Z
r
fðyÞhðxÞ~UUs;rðx; yÞdydx

¼
X
m2M

X
l2M

U xs
m; x

r
l

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼:Ss;rm;l

Z
s
hðxÞLs

mðxÞdx|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:V s

m ðhÞ

Z
r
fðyÞLr

lðyÞdy|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:V r

l ðfÞ

¼
X
m2M

X
l2M

Ss;r
m;lV

s
m ðhÞV r

l ðfÞ; ð17Þ

i.e. the bilinear form can be expressed in terms of a, typically small, matrix Ss;r and a small number of

functionals ðV s
m Þm2M and ðV r

l Þl2M .
The advantage of the new representation becomes obvious if we discretize the new bilinear form ~ggs;r by

introducing

~GGs;r
ts :¼ ~ggs;rðvt; vsÞ; Vs

tm :¼ V s
m ðvtÞ and Vr

sl :¼ V r
l ðvsÞ;

for t; s 2 T. The Eq. (17) now takes the form

~GGs;r ¼ VsSs;rðVrÞ>: ð18Þ

We set

ns :¼ #ft 2 T : s \ t 6¼ ;g; nr :¼ #fs 2 T : r \ s 6¼ ;g and k :¼ #M ;

and find that storing ~GGs;r as a dense matrix requires nsnr units of memory, while storing Vs, Vr and Ss;r

requires nsk þ nrk þ k2 units of memory. Typically k is much smaller than ns and nr, so the factorized

representation is much more efficient.

3.1.3. Precision

We have seen that replacing the kernel function U by its interpolant ~UUs;r leads to an efficient repre-

sentation of the discretized matrix ~GGs;r. In order to be able to use this representation, we have to ensure that

the error introduced by the interpolation can be controlled, i.e., that an estimate of the form

j~UUs;rðx; yÞ � Uðx; yÞj6 �m;

holds for x 2 s, y 2 r, where �m 2 R>0 depends favorably on the interpolation order m.
If we use Chebyshev interpolation for Is

m and Ir
m, we have a constant Cin 2 R>0 such that

U


 �Is

m �Ir
m½U�




1;Bs�Br 6Cin

3�m

ðmþ 1Þ! diamðBs � BrÞmþ1 Dmþ1
xy U




 



1;Bs�Br

; ð19Þ

holds for all m and all functions u 2 Cmþ1ðBs � BrÞ (cf. appendix of [4]), where diamðBs � BrÞ denotes the
Euclidean diameter of the axis-parallel box Bs � Br and Dmþ1U is the total derivative of order mþ 1 of U.
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Combining this estimate with (14), we find

kU� ~UUs;rk1;Bs�Br 6
CinCas

distðBs;BrÞd
3�m c0 diamðBs � BrÞ

distðBs;BrÞ

� �mþ1

:

This implies that we have to be able to bound the diameter by the distance in order to reach a uniform

bound for the approximation error, i.e., we require the admissibility condition

diamðBs � BrÞ6 gdistðBs;BrÞ; ð20Þ

to hold for a parameter g 2�0; 3=c0½ and find

kU� ~UUs;rk1;Bs�Br 6 �m :¼ CinCasgdþ1

diamðBs � BrÞd
ðc0g=3Þm; ð21Þ

so the interpolant converges exponentially on Bs � Br � s� r if the order m is increased.

3.2. Decomposition of Ch � Ch

In the previous section, we have seen that we can efficiently approximate the local interpolants ~UUs;r if the
sub-domains s; r of Ch satisfy the admissibility condition (20).

3.2.1. Block partition

Obviously, the pair ðCh;ChÞ does not satisfy this condition, so we have to split Ch � Ch, the domain of

integration of the bilinear form gð�; �Þ, into a collection P of sub-domains that either satisfy this condition or

are so small that we can treat them directly without compromising the efficiency.

The family P � fðs; rÞ : s; r � Chg has to satisfy the following conditions:[
fs� r : ðs; rÞ 2 Pg ¼ Ch � Ch;

ðs1 � r1Þ \ ðs2 � r2Þ 6¼ ; ) ðs1; r1Þ ¼ ðs2; r2Þ for all ðs1; r1Þ; ðs2; r2Þ 2 P :

According to the admissibility condition, we split P into the set Pfar of far-field blocks and the set Pnear of
near-field blocks

Pfar :¼ fðs; rÞ 2 P : diamðBs � BrÞ6 gdistðBs;BrÞg; Pnear :¼ P n Pfar:

For each ðs; rÞ 2 Pfar, we can construct a local approximation ~ggs;rð�; �Þ of the form (13). For the remaining

blocks ðs; rÞ 2 Pnear, we use the original local bilinear form gs;rð�; �Þ. The approximation of the global bi-

linear form gð�; �Þ is then given as the sum of the local bilinear forms:

~ggðf; hÞ ¼
X

ðs;rÞ2Pfar

~ggs;rðf; hÞ þ
X

ðs;rÞ2Pnear

gs;rðf; hÞ: ð22Þ

This corresponds to replacing the kernel function U by its piecewise mth order interpolant given by

~UUðx; yÞ :¼
~UUs;rðx; yÞ if ðx; yÞ 2 s� r for ðs; rÞ 2 Pfar;
Uðx; yÞ otherwise:


The estimate (21) implies

jUðx; yÞ � ~UUðx; yÞj6 �m;

for all x; y 2 Ch, so we find
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jgðf; hÞ � ~ggðf; hÞj ¼
Z
Ch

Z
Ch

fðyÞhðxÞðUðx; yÞ
���� � ~UUðx; yÞÞdydx

����
6 kU� ~UUk1;Ch�Ch

Z
Ch

jfðyÞjdy
Z
Ch

jhðxÞjdx

6 �mkfkL1khkL1 6 �m jChj kfkL2ðChÞkhkL2ðChÞ:

The construction of a good partition, i.e., a partition where the number of non-admissible blocks is small, is

not trivial. Therefore, we will start by constructing a hierarchy of partitions of Ch and then use this hier-

archy to create a partition of Ch � Ch.

3.2.2. Cluster tree

We will construct the hierarchy of partitions of Ch by successively splitting domains. Since a pair ðs; rÞ of
sub-domains of Ch is admissible if the diameter of Bs � Br is smaller than the distance of these boxes (recall

that Bs and Br are the minimal axis-parallel boxes containing s and r), a good strategy is to split domains in

such a way that the diameters of the newly created sub-domains are decreased as much as possible.

In order to keep the implementation simple, we consider only sub-domains s that are the union of a set

ŝs � T of triangles, and we identify the sub-domain s with the set ŝs. Then successive splitting of domains,

starting with the set T of all triangles, leads to a tree structure, the cluster tree:

Definition 1. A tree C is called a cluster tree for a set C if

• the set C is the root of C, i.e., rootðCÞ ¼ C, and
• if a node s 2 C is not a leaf, then it is the (up to sets of measure zero) disjoint union of its sons, i.e.,

s ¼ _[[fs0 : s0 2 sonsðsÞg:

Each node s 2 C is called a cluster.

A cluster tree can be constructed from an arbitrary set of triangles by binary space partitioning: We start

with the root cluster containing all the triangles, corresponding to the entire domain, split it into two son

clusters and repeat the procedure recursively until the clusters contain less than a fixed number Clf P 1 of

triangles.

The splitting strategy is based on the geometry: We denote the center of each triangle t 2 T by lt 2 R3,

choose a suitable coordinate axis and split the set along this axis. This leads to the algorithm in Fig. 3.
Fig. 3. Cardinality (#) balanced geometric bisection.



S. B€oorm, J. Ostrowski / Journal of Computational Physics 193 (2003) 67–85 77
Remark 2 (Geometric balancing). If the surface triangulation is not quasi-uniform, e.g., if it is the result of

an adaptive refinement strategy, then a different splitting technique than that given in Fig. 3 is to be applied:

instead of splitting the cluster s into two clusters s1, s2 that are of similar cardinality, we use the middle of

the coordinate interval ½il; sl� in order to determine which son of s has to contain which triangles

s1 :¼ ft 2 s : lt;l 6 ðsl þ ilÞ=2g; s2 :¼ ft 2 s : lt;l > ðsl þ ilÞ=2g;

with l still denoting the longest edge.

3.2.3. Construction of a block partition

The definition of the axis-parallel boxes Bs carries over to clusters;

Definition 3 (Bounding boxes). Let s 2 C. The minimal axis-parallel box Bs � R3 satisfying t � B for all

t 2 s is called the bounding box of the cluster s.

We will use the following simplified admissibility condition:

Remark 4 (Simplified admissibility condition). In some applications, the admissibility condition (20) is

replaced by the condition

maxfdiamðBsÞ; diamðBrÞg6 2g0distðBs;BrÞ: ð23Þ

By setting g :¼ 2
ffiffiffi
2

p
g0, we find

diamðBs � BrÞ6
ffiffiffi
2

p
maxfdiamðBsÞ; diamðBrÞg6 2

ffiffiffi
2

p
g0distðBs;BrÞ;

so the simplified admissibility condition implies the original condition. If g0 < 3=ð2
ffiffiffi
2

p
c0Þ, then we get

g < 3=c0 and therefore exponential convergence.

Based on the criteria (20) or (23) and a cluster tree, we can find a partition of Ch � Ch by calling the

algorithm BlockPartition(Ch, Ch, ;) of Fig. 4.

Remark 5 (Helmholtz kernel). If we consider the Helmholtz kernel

Gðx; yÞ ¼ expðijkx� ykÞ
kx� yk ;

the constant c0 appearing in the asymptotic smoothness estimate (14) will scale linearly in j, so the speed of

the convergence will deteriorate for high wave numbers.

When dealing with a curve in two-dimensional space, a special multipole expansion can be used to

achieve fast convergence even for high wave numbers [1], but it is not clear to us whether this approach can
be extended to the three-dimensional problem we are considering.
Fig. 4. Construction of a partition of Ch � Ch.



78 S. B€oorm, J. Ostrowski / Journal of Computational Physics 193 (2003) 67–85
3.3. Matrix–vector multiplication

The matrix–vector multiplication v ¼ ~GGu with a vector u 2 RT corresponds to the evaluation of Eq. (22).
We split this evaluation into four parts:

• Forward transformation:We transform u into coefficients ur :¼ Vr>u 2 RM corresponding to each cluster.

• Transformed multiplication: We evaluate the sum vs :¼
P

r2rowðsÞ S
s;rur 2 RM for rowðsÞ :¼

fr 2 C : ðs; rÞ 2 Pfarg.
• Backward transformation: We transform the coefficients vs back into the standard base in order to find

vfar :¼
P

s2C V
svs.

• Near-field computation: We conclude the computation by adding the near-field part v :¼
vfar þ

P
ðs;rÞ2Pnear G

s;ru.
Due to

~GGu¼
X

ðs;rÞ2Pnear

Gs;ruþ
X

ðs;rÞ2Pfar

VsSs;rVr>u¼
X

ðs;rÞ2Pnear

Gs;ruþ
X

ðs;rÞ2Pfar

VsSs;rur ¼
X

ðs;rÞ2Pnear

Gs;ruþ
X
s2C

Vsvs ¼ v;

this four-step procedure indeed computes the matrix–vector product.

In order to find a fast algorithm for the matrix–vector multiplication, we will now introduce an alter-

native representation of the matrices Vs: Let s 2 C be a cluster with sonsðsÞ 6¼ ;. Since we use the same

order of interpolation for all clusters, we have

Ls
m ¼ Is0 Ls

m

� �
¼
X
m02M

Ls
m xs0

m0

� �
Ls0

m0 ¼
X
m02M

Ts0 ;s
m0m L

s0

m0 ;

with transfer matrices Ts0 ;s 2 RM�M defined by

Ts0 ;s
m0m :¼ Ls

m xs0

m0

� �
: ð24Þ

This alternative representation implies

Vs
tm ¼

X
s02sonsðsÞ

Vs0Ts0 ;s

0
@

1
A

tm

:

Using these equations, we find the recursive procedures for the computation of us and vfar given in Fig. 5.

Combining these procedures, we can derive the fast matrix–vector multiplication algorithm that is given in

Fig. 6.

Remark 6 (Storage). The introduction of the transfer matrices Ts0 ;s leads to a significant reduction in the

amount of memory needed to store theH2-approximation of the matrix G: since we are able to construct Vs

for all non-leaf clusters s by using the transfer matrices, we need to store Vs only for leaf clusters.

This reduces the amount of storage required to store the H2-matrix approximation to Oðnm3Þ (cf. [4]).

3.4. Treatment of b(�, �)

Since the bilinear forms mRð�; �Þ and qð�; �Þ can be expressed by gð�; �Þ, we now have to treat bð�; �Þ (cf. (9))
in order to be able to compress all matrices occurring in our boundary element formulation.

Since this bilinear form is based on gradU instead of U, we have to find a degenerate approximation of

the derivatives of the kernel function. In order to keep our algorithm simple, we use the derivatives of the

approximation ~UU of U, i.e., replace gradU by grad~UU. Please note that grad~UU exists almost everywhere, since
the local interpolants ~UUs;r are polynomials and therefore differentiable.



Fig. 6. Matrix–vector multiplication.

Fig. 5. Fast forward and backward transformations.
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We ignore the sparse parts of the bilinear form and use the same approach as before on the remainder,

i.e., we replace the singularity function U by its local approximations ~UUs;r for ðs; rÞ 2 Pfar. This leads to the

following local bilinear forms:

~bbs;rðg;EÞ ¼
Z
s

Z
r
hcurlCgðyÞ; cDEðxÞihgradx ~UUs;rðx; yÞ; nðxÞidydx

�
Z
s

Z
r
hcurlCgðyÞ; nðxÞihgradx ~UUs;rðx; yÞ; cDEðxÞidydx

¼
X
m2M

X
l2M

Ss;r
ml

Z
Cs

Z
Cr

X3
‘¼1

ðcurlCgÞ‘ðyÞðcDEÞ‘ðxÞ gradLs
mðxÞ; nðxÞ

� �
Lr

lðyÞ
 

�
X3
‘¼1

ðcurlCgÞ‘ðyÞn‘ðxÞ gradLs
mðxÞ; cDEðxÞ

� �
Lr

lðyÞ
!
dydx

¼
X3
‘¼1

X
m2M

X
l2M

Ss;r
ml

Z
r
ðcurlCgÞ‘ðyÞLr

lðyÞdy �
Z
s
ðcDEÞ‘ðxÞ gradLs

mðxÞ; nðxÞ
� �

� n‘ðxÞ gradLs
mðxÞ; cDEðxÞ

� �
dx:
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Apart from the summation over ‘, this representation is similar to that in (18), so we introduce matrices

Vs;‘ 2 RE�M and Wr;‘ 2 RN�M by setting

Vs;‘
em :¼

Z
s
ðcDbeÞ‘ðxÞ gradLs

mðxÞ; nðxÞ
� �

� n‘ðxÞ gradLs
mðxÞ; cDbe

� �
dx;

Wr;‘
vl :¼

Z
r
ðcurlC/vÞ‘ðyÞLr

lðyÞdy;

and find

~BBs;r ¼
X3
‘¼1

Vs;‘Ss;rWr;‘> ;

where ~BBs;r is the Galerkin discretization of the local bilinear form ~bbs;rð�; �Þ and Ss;r is the matrix from (17).

Using this representation, we can treat the approximation of bð�; �Þ by exactly the same techniques as that of

gð�; �Þ.
4. Implementation

4.1. Interpolation

We use tensor product Chebyshev interpolation, i.e., the interpolation points ðxs
mÞm2M and ðyrlÞl2M in

Eq. (16) are the Chebyshev points for the axis-parallel boxes Bs and Br.

The computation of these points is straightforward: The mth order Chebyshev points ðxiÞmi¼0 for the

interval ½�1; 1� are given by

xi :¼ cos p
2iþ 1

2mþ 2

� �
:

For a given interval ½a; b� � R, the transformed Chebyshev points ðx½a;b�i Þmi¼0 are

x½a;b�i :¼ bþ a
2

þ b� a
2

xi;

and the corresponding one-dimensional Lagrange polynomials have the form

L
½a;b�
i ðxÞ :¼

Y
j 6¼i

x� x½a;b�j

x½a;b�i � x½a;b�j

:

The axis-parallel box Bs can be written as Bs ¼ ½a1; b1� � ½a2; b2� � ½a3; b3�, so the tensor product Chebyshev

points are given by

xs
m :¼ x½a1;b1�m1

; x½a2;b2�m2
; x½a3;b3�m3

� �
; ð25Þ

for m ¼ ðm1; m2; m3Þ 2 M :¼ fm 2 N3
0 : kmk1 6mg. The corresponding Lagrange polynomials are given by

Ls
mðxÞ ¼ L½a1;b1�

m1
ðx1ÞL½a2;b2�

m2
ðx2ÞL½a3;b3�

m3
ðx3Þ;

for x ¼ ðx1; x2; x3Þ 2 R3.
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4.2. Setup of the H2-matrices

In order to set up the H2-matrix approximation, we have to create the coefficient matrices Ss;r for
ðs; rÞ 2 Pfar, the basis matrices Vs for s 2 C with sonsðsÞ ¼ ;, the transfer matrices Ts0 ;s for s 2 C with

sonsðsÞ 6¼ ;, and the near-field matrices Gs;r for ðs; rÞ 2 Pnear.
The computation of Ss;r is straightforward: using the interpolation points ðxs

mÞm2M and ðxr
lÞl2M defined in

Section 4.1, we have to evaluate the kernel function U

Ss;r
ml ¼ U xs

m; x
r
l

� �
:

The matrices Vs satisfy

Vs
tm ¼

Z
s
vtðxÞLs

mðxÞdx ¼
Z
t
Ls

mðxÞdx;

since vt is the characteristic function of the triangle t. This integral can be computed by standard quadrature

techniques, since the integrand Ls
m is a polynomial.

Let Bs ¼ ½a1; b1� � ½a2; b2� � ½a3; b3� and Bs0 ¼ ½c1; d1� � ½c2; d2� � ½c3; d3�. Then the transfer matrix Ts0 ;s is

given by

Ts0 ;s
m0m ¼ Ls

m xs0

m0

� �
¼ L½a1;b1�

m1
x½c1;d1�m0

1

� �
L½a2;b2�

m2
x½c2;d2�m0

2

� �
L½a3;b3�

m3
x½c3;d3�m0

3

� �
;

i.e., is the Kronecker product of three matrices computed by evaluating one-dimensional Lagrange poly-

nomials. This allows us to compute the matrices Ts0 ;s efficiently. Alternatively, we can reduce the memory

requirements by storing the Kronecker factors instead of the full matrix.

The near-field matrices Gs;r are computed by a semi-analytical approach 2 for the double integrals with

singular kernels, where the interior integral is calculated analytically and the exterior integral is evaluated

by a Gaussian quadrature scheme. Some of the analytical integrations can be looked up in [13].

Remark 7 (Compact storage). The matrices Vs, Vs;‘ and Ws;‘ have to be stored for the leaf clusters only,

since the matrix–vector multiplication algorithm uses the transfer matrices for all other clusters.

The transfer matrices Ts0 ;s and the coefficient matrices Ss;r coincide for the bilinear forms gð�; �Þ and

bð�; �Þ, so they have to be stored only once.

Most of the entries in the matrices Vs, Vs;‘, Ws;‘ and Gs;r are zero, since only the basis functions whose
supports intersect the domains s or r lead to non-zero entries. Since s and r are leaves of the cluster tree,

they can be assumed to be quite small and therefore intersect only a small number of triangles. By storing

only the non-zero entries, the matrices can be treated efficiently.

The same holds for the near-field matrices: they are sparse due to the locality of leaves of the cluster tree,

so we can apply the usual techniques for sparse matrices.

Differently from standard H2-techniques, degrees of freedom located in the edges and nodes can appear

multiple times during the course of the matrix–vector multiplication due to the fact that our clustering

technique is based on the triangles of the grid, not on the degrees of freedom. The compression rates in

Fig. 1 show that the performance of our method is still good.
2 Private communication with Dr. Olaf Steinbach, University of Stuttgart.
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The diagonal part of MR and the matrix MI consist of scalar products of linear edge functions, therefore

they are sparse and do not have to be compressed. The non-diagonal part of MR is the scalar single layer

potential of Eq. (13) with constant basis functions.
All in all, the elaborate operators can be compressed without major difficulties by the H2-matrix ap-

proximation technique. A large number of matrix entries must be calculated and stored only once and can

be reused for different operators. This automatically saves a lot of storage and enhances the efficiency of the

algorithm.
4.3. Preconditioning

A preconditioned conjugate residual method is used for solving Eq. (5).
We use the block diagonal preconditioner P given by

P :¼

MR þMI 0 0 0

0 MR þMI 0 0

0 0 Q 0
0 0 0 Q

0
BB@

1
CCA; ð26Þ

which is an approximation of the diagonal part of the operator itself, see (5). For the strongly coupled

FEM/BEM formulation, it is possible to show that their exist bounds for the spectrum of the precondi-

tioned system that do not depend on the meshwidth.

Therefore we can expect the preconditioner to work well for the impedance model, too. The condition

numbers were computed for a small test example, and decreased from 38,000 for the original system to 4 for

the preconditioned system.

We use the conjugate gradients method with a simple Jacobi preconditioner to solve the diagonal blocks

of P approximately.
All the operators of P, namely MR,MI and Q, are also part of Eq. (5), thus are already compressed if the

H2-matrix approximation is applied. So the H2-matrix approximation also pays for the preconditioner.

The near-field part Qnear of the operator Q can be inverted by a sparse Gaussian elimination scheme as

long as the dimensions are moderate, giving us a preconditioner for the third and forth row of P.
5. Numerical experiments

The predicted behavior of theH2-matrix approximation method was tested for the three operatorsMR, Q,
and B of Eq. (5) by using the typical geometry of the induction heating setting, as shown in Fig. 7. The

storage and cpu-time requirements for solving Eq. (5) with the uncompressed standard method (i.e., semi-

analytic quadrature of constant order used to compute a dense matrix) and the interpolation-based

H2-method were compared. The order of interpolation was set to be 2 and the simplified admissibility

condition (23) with g0 ¼ 0:99 was used. This turned out to lead to sufficiently small approximation errors.

Table 1 shows the performance of the H2-matrix approximation compared with the use of dense

matrices.
The solver was stopped when the residual had decreased to a value below 0.0001 times the residual in the

first step. The documented time is the time needed for filling the matrices and solving the system. The

number of unknowns is defined as

n :¼ 2� ð#Eþ #Nþ number of holes in the workpieceÞ;

and for the storage requirements one finds



Fig. 7. Test geometries A and B.

Table 1

Time, storage, and errors for the impedance model

n Std Strg (MB) H2 Strg (MB) Std time (min) H2 Time (min) Rel. error

2948 22.7 15.5 20 15 1.4�3

6916 125.3 35.0 114 43 2.5�3

11,420 342.0 71.0 402 96 1.5�3

23,840 954.1 93.4 876 144 2.2�3

46,724 5725.0 333.0 – 540 –
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Standard storage ¼ ð2� ð#EÞ2 þ ð#E� #NÞ þ ð#NÞ2Þ � sizeofðdoubleÞ bytes;
H2 storage ¼ Storage needed for the H2 approximation:

The relative error is defined as the difference between the surface current cDj :¼ r � cDE of the H2-solution
and that of the solution obtained without compression

Rel: error :¼
Z
C

kcDjH2ðxÞ � cDjst:ðxÞk
kcDjst:ðxÞk

dSx;

because the current is the most important entity for the calculation of the inductive heating.

The first four rows were produced by interpolation on the geometry A of Fig. 7 and the last on geometry

B. Storage requirements and calculation times are strongly reduced, and geometries consisting of 20,000

surface faces can be calculated. In each case the time for filling the matrices amounts to 90% of the total

time. The experiments were carried out on a Sun Ultra 450 computer with a 300 MHz Ultrasparc II

processor.

In order to investigate the influence of the admissibility parameter g0 (cf. (23)) and the order m of the
polynomial expansion (cf. (15)), we use a fixed approximation of test geometry B from Fig. 7 with 3312

edges and 1106 vertices, leading to 8836 degrees of freedom, and examine the results for different combi-

nations of parameters in Table 2. The table contains the times for creating an approximation (build),

performing a matrix–vector multiplication (MVM), the amount of required storage (storage) and the error

(Op. error) of the approximate matrix in the relative operator norm, i.e., kK � KH2k2=kKk2. We can see



Table 2

Influence of the admissibility parameter g0 and the approximation order m

g0 m Build (min) Storage (MB) MVM (s) Op. error

1.4 2 38.1 52 3.3 1.1�4

1.1 44.5 59 3.8 9.2�5

0.8 61.5 79 4.5 4.5�5

0.5 70.9 90 5.0 1.7�5

1.4 1 13.7 28 3.5 6.7�4

2 38.1 52 3.3 1.1�4

3 50.4 61 5.5 2.1�5

4 70.3 78 8.2 1.0�5

5 101.8 108 11.0 4.3�6

Standard 127.4 205 8.6 0
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that, in order to achieve high accuracy, increasing the approximation order is more advisable than de-

creasing the admissibility parameter g0. The slight increase when switching from m ¼ 1 to 2 is due to the fact

that the maximal leaf size Clf (cf. Fig. (3)) is chosen to be proportional to m3, so the cluster tree for m ¼ 2 is

much smaller than that for m ¼ 1, which results in better performance.

A special feature is implemented due to the fact that the workpiece rotates. This means that the current

has to be calculated for several positions of the workpiece per rotation. Therefore, it is desirable to find a

clever way for reusing entities, which have already been calculated:
The BEM operators change only for items that are moving relative to each other. Parts of the operators

which describe workpiece/workpiece interactions (w/w) or inductor/inductor interactions (i/i) need to be

calculated only once. But how to reach this goal in the H2 context where everything is linked together in

the tree? The option chosen here is to apply the geometric bisection algorithm (cf. Fig. 3) separately to

workpiece and inductor. Then each cluster consists exclusively of workpiece triangles or inductor triangles.

In this case, the matrices V,W and T do not change during the rotation and have to be calculated only once

(except for the useless T of the root). After merging the two resulting trees under one big root, one finds the

situation of Fig. 8. If the block partition algorithm (cf. Fig. 4) is now applied to this new tree, each pair of
Fig. 8. Cluster tree for the inductor/workpiece domain.
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admissible clusters belongs either to w/w or i/i or to the interaction w/i between workpiece and inductor.

The near-field and the matrices S have to be refreshed only for the w/i pairs. This is a big advantage because

the interesting part with the biggest number of triangles is the workpiece, and w/w does not have to be
refreshed.
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